Canyon Crest was able to test 5 plates and got good results from several of them (see below). They made two new plates using the new spotting template that was made last week, but will have to wait until they are tested to see how much of a difference it makes. One of the plates hopefully will build off recent successes with iron and potassium, while the other is an interesting experimental plate consisting of sodium, manganese, and iron inspired by new battery technology (see 2/27 entry).
KMnO4, LiCl, Fe(NO3)3 (80:0:10, 90:0:0, 60:30:0) data was so promising that they created a plate with other potassium and iron compounds: FeCl2, K4Fe(CN)6, K2Cr2O7. Also made a plate with NaNO3, Mn(NO3)2, FeCl3 to test any effect of Manganese in the potassium manganate.
(NH4)3VO3, Fe(NO3)3, K2Cr2O7 (0:70:20) reinforces the previous data that suggested a positive combination of ~3:1 Iron:Potassium. However, the ammonium vanadate clearly had little impact on the data. Because of this and other null results from using complex ions (namely ammonium cerium nitrate), they are going to avoid using obscure complex ions in order to test the central atom.
San Marino Blank Team made a new plate with 0.1 M ZnSO4,0.1 M Fe(NO3)3, 0.1 M CuSO4 in spot ratios of 8:12, 10:10, 12:8, 14:6, 16:4 & 18:2. It will be baked at a lower temperature of 300 to see if that reduced the flaking seen in past plates.
Green Team tested their plate of Cu and very dilute Zn. #1 was the lightest spot, it was light grey. #4 was brown, grey, the color settled in the middle. #5 was the darkest and looks most like the Cu control. They chose the spots that were highest on the negative DC tests, and lowest on the positive DC tests.
In the scans without Na2SO3, the peaks were in the same location as last week. Spot #4 peaked when a positive bias was applied. For these scans, spots 1 and 5 were significantly lower than the surrounding spots. When the bias was reversed, the peaks flipped, as they did last week. Next week they will spot different ratios of copper and diluted cobalt, one of the higher peaks (Spot #5) from the plate on 3/7.
Beckman Group 1 epoxied their plate (BHS-1-52) and are planning to test it next week. Regarding their new plate on aluminum iron (BHS-1-53), when spotting, the drops spread out from the pipettes and did not form coherent spots. They are still planning to bake it and test it next time. Group 2 is continuing their tests on bismuth-based plates. They made two plates (BHS-2-71A and BHS-2-71B) that tests various concentrations of bismuth and iron. Group 3 made many 0.04 M bismuth nitrate solutions in order to test their solubility in different solvents such as HNO3. This is because they do not have 2,4-pentadione nor glacial acetic acid, so they need to find some other way of dissolving the bismuth nitrate. Group 4 continued with their testing of the effect of UV treatment on the FTO plates. They epoxied thirty minute UV treated plate, but observed that it had been slightly damaged while in storage. They decided to UV treat a new plate for thirty minutes to spot it next week.
Recent Comments