Week of 2/20-2/26

In order to be able to run more plates and become more efficient in the long run, Beckman decided to install the SEAL Kit Software onto another computer. Because it took time, it was too late to run any plates this week. After researching and looking through previous lab notebook reports, Group 1 concluded that there had been the most success using iron nitrate and aluminum nitrate so far. Therefore, they decided to prepare a plate with different ratios of aluminum nitrate to iron nitrate. Group 2: saw there was success using bismuth from PCC’s work. Therefore they decided to retry bismuth with a lower concentration (0.01 M) in order to achieve greater solubility. Then, they spotted a plate using different ratios of bismuth nitrate and iron nitrate. Groups 3 and 4 installed the SEAL Kit Software onto a Windows 10 laptop and set the SEAL Kit up to confirm that it worked. They also spotted a plate with 0.03 M Fe(NO3)3 and then UV treated the plate for thirty minutes as part of the research on the effects of different time intervals of UV treatment.

Canyon Crest Academy was able to spot two more plates and kiln and epoxy several others. However, more interesting is what they failed to do: make a plate of iron, tin, and lead. They attempted it three times and discovered issues with all three solutions. The first mistake was using tin (II) chloride (SnCl2)which was past its shelf life. This particular bottle of tin had been prepared in 2006 and had apparently transformed into stannic chloride (SnCl4) via exposure to air. Second, there were some precipitation issues with a beaker of iron sulfate mislabeled as iron nitrate (leading them to believe it was soluble in lead). Finally, they didn’t take into account the limited solubility of the lead chloride solution made (the solubility of lead which is 10.8 g/L; the attempted solution was 27.8 g/L). These issues were resolved quickly though and they made two new plates.

San Marino’s Blank Team: Last week’s plate had severe coffee ringing effect, but it is unlikely that it will actually affect test results. The greater the concentration of copper/nickel, the darker the oxides are. 100% Sodium Metavanadate is white in color; 100% Ammonium metavanadate is white-yellow in color.

Potential materials stable above/below water oxidation line:

  1. Manganese vanadate
  2. Manganese oxide
  3. Cadmium oxide
  4. Barium oxide

Testing: dark current = 0.1-0.3V and applied voltage = 0.07V. The current increases from left to right, with the 75% nickel/copper compounds resulting in the highest current. The highest peak was only ~0.2V, and the differences in height were not dramatic (within 0.1v). The purported sodium metavanadate and ammonium metavanadate spots washed away (as expected; they should be water soluble).  This is similar to what occurred last year when sodium metavanadate washed away from one of our plates.  Overall, no significant results.

Made new plate (total volume each spot is 10 microliters):

ZnSO4 + NH4VO3 (2.5:7.5), (5:5), (7.5:2.5)

Fe(NO3)3 + NH4VO3 (2.5:7.5), (5:5), (7.5:2.5)

Fe(NO3)3 control

 

Submit a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>